This function performs principal component analysis (PCA) on gene expression data in a `SummarizedExperiment` object.
Usage
pca_gexp(
exp_data,
assay = "norm",
filter = TRUE,
n_hvg = 2000,
center = TRUE,
scale = TRUE
)
Arguments
- exp_data
A `SummarizedExperiment` object containing the gene expression data.
- assay
A character string specifying the assay to use for PCA. Default is `"norm"`.
- filter
Logical. If `TRUE`, PCA is performed on the top `n_hvg` highly variable genes. If `FALSE`, PCA is performed on all genes. Default is `TRUE`.
- n_hvg
An integer specifying the number of highly variable genes to use if `filter = TRUE`. Default is 2000.
- center
Logical. If `TRUE`, the variables are centered before PCA. Default is `TRUE`.
- scale
Logical. If `TRUE`, the variables are scaled to unit variance before PCA. Default is `TRUE`.
Details
If `filter = TRUE`, the function identifies the top `n_hvg` highly variable genes using a robust coefficient of variation and performs PCA on these genes. Otherwise, PCA is performed on all genes in the selected assay.
The `prcomp` function is used for PCA, with options to center and scale the data before analysis.